If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+35x-10=0
a = 7; b = 35; c = -10;
Δ = b2-4ac
Δ = 352-4·7·(-10)
Δ = 1505
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-\sqrt{1505}}{2*7}=\frac{-35-\sqrt{1505}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+\sqrt{1505}}{2*7}=\frac{-35+\sqrt{1505}}{14} $
| -7+x/15=-2 | | 5+.65x=10+,45x | | d=5.5,5.5/2 | | 12=m/4;m= | | n=19=40 | | 3(n+7)=+27 | | .4x=-1.2 | | 4,5-x=-7x+1 | | 13/40d=2 | | F(x)=-x^2+40x+500 | | F(x)=x^2+40x+500 | | 314/3.14=3.14×r^2/3.14 | | 5/3c=15 | | P(x)=12x^2+240x-900 | | 18=4b=70 | | |3x-0.2|=0.5 | | x+(.05x)+(.08x)=169.50 | | x/3+1=7/15= | | -41+3x=-29-18 | | 340=a(a+3) | | 4,5+x+x=14 | | 4x+8=4x-9 | | 5x2+x+20= 2x | | x+.05x+.09975x=887.26 | | 0.24=0.205/1-0.205t | | 5(a+2)^2+9=134 | | 15•(-y+3)+31y=-3 | | p-228=970 | | 6p=432 | | q-824=-584 | | r-295=-22 | | -728=w-869 |